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The Z-transform (discrete Laplace transform) is used to solve heat-conduction 
problems in axisymmetric bodies of arbitrary shape for different types of bound- 
ary conditions. 

The mathematical apparatus of the Z-transform (or discrete Laplace transform) is widely 
used in the dynamics of control systems [i, 2]. The Z-transform is also effective in the 
case when the control system is the temperature field of a body, for example an element of a 
power plant [3]. In this case the problem reduces to the solution of the heat-conduction 
equation by the Z-transform method. This method has been used in the solution of one-dimen- 
sional problems for the field in a bar and in a cylinder [3, 4]. Below we consider the case 
of a two-dimensional axisymmetric body of arbitrary shape. Many of the parts of steam and 
gas turbines, and other power equipment, such as rotors, regulating valves, etc., can be re- 
duced to this form. As an example, consider a body formed by rotation about the x axis of a 
contour whose boundary (Fig. i) is arbitrarily divided into two parts: F* represents the 
union of segments 0-1-2-3-4-5, and ~** represents segments 5-6-7-8-9-0. 

The geometry shown in Fig. 1 corresponds to regulating and cut-off valves in turbines, 
and is shown only as an illustration; the computations done below will be for very different 
systems. 

For simplicity we will only consider cases where the heat flux vanishes on the portion 
of the boundary F**: 

(r**, x**)Ef**, Ot. .I  = 0 .  (1) 
0N ,r** 

External effects on the temperature field of the body occur through the surface F*. 

The heat-conduction equation for the body has the form 

1 Ot(~, r, x) OZt § 1 Ot -~- O2t 
. . . . . . .  , - -  v Z t  ('r,, r ,  x ) .  ( 2 )  

a O'c Or ~ r Or Ox ~ 

We use the concept of a grid function of time t[nAT, r, x], or in abbreviated notation t[n, 
r, x], whose values are defined at the discrete times T = nAT. Values of the grid functions 
tin, r, x] are identical to those of the continuous function t(T, r, x) at the same instants 
of time; the function t(T, r, x) can be thought of as enveloping the grid function t[n, r, x]. 
The analog of the first derivative of a continuous function is the first (backward) differ- 
ence of the grid function: 

At In, r, x]----t [n, r, x]---t I n -  1, r, x]. (3) 

With the help of (3) and after transformation to relative coordinates, the heat-conduc- 
tion equation (2) takes the form 

vZt[ n, O, u]--f-iAt[n, 9, ul----O. (4) 

We take the Z-transform of this equation with the help of the relation [i] 

2~ 
Z{l[n]}=T(z, 9, u)= ~ t l n l z - " ,  (5) 

n-=0 
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Fig. i. Geometry for the boundary condi- 
tions on the surface of a body of revolu- 
tion. 

and this brings (4) to the form 

vZT(z,  9, u)--J:-i( 1 - - z - t )  T (  z, 9, u ) = 0 .  (6) 

Where we use some properties of the discrete Z-transform [i]: multiplication of T(z) 
by z -x corresponds to a time lag of one discrete step, i.e., Z-1{z-IT(z)}=t[n--l]; if the 
grid function identically vanishes for negative values of its argument, then the transform 
of the k-th backward difference is given by 

Z{Akt[n]} = (1--  z-O< (5a) 

We consider boundary conditions of types I and II on the surface P*. It can be shown 
that the solution for type III boundary conditions is a combination of the solutions for type 
I and II boundary conditions. 

Type I boundary conditions are represented in the form 

h 

(,o,, ~,) ~ r*, t ~ b,  r ~'] : -~ ~ [,,~, r ' l ,  ~ [~, r*] = .~ [,~] ~ (r*). (7)  
. i= I 

Type II boundary conditions can be written in similar form 

Ot II [n, F*] ~ OtV [n, F*] t" [n, F*] 
ON : ~ I 0 i tI rr 

ON ' ON : Yi [n] r (f*). (8) 
] = 1  

yiZ(T) or yj~[n] (2 = I, II) are known arbitrary functions of time, de- The function 
scribing external effects on the temperature field of the body. 

Obviously, the general solution of the problem for the temperature field of the body 
will be a superposition of solutions, corresponding to each of the functions yjl[n]: 

h 

T t In, 9, u] = ~ Fin, 9, ul. (9) 

Application of the Z-transformto (7) and (8) leads to: 

T} (z, r * ) :  r} (z) ~ (r*), (Ta) 

OT~/ (z,  f * )  H . 
aN = Yi  (z) mi (F*). (8a) 

We seek the solution of (6) for the j-th component of the field in a form similar to 
that in the case of a one-dimensional field [4]: 

i : 0  
(lo) 

Substitution of (i0) into (6) and taking into account the arbitrary nature of the func- 
tion.s y~l[n], results in a recursive set of differential equations determining the functions 
Rj i~(p ,Ju) : 

2 / l 2 l , Ri,~-~ (P, i l =  I, II VRJi(9, u ) =  u), ~ l ,  VR]o.  (ii) 

The boundary c o n d i t i o n s  fo r  the  Rj i  ~ a re  de termined by s u b s t i t u t i o n  of  (10) in to  (1) ,  
(7), and (8): 
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uJ[~-:] ~J[,,-z] d[,,+.,,-2] s/d[.-,.+:] #[,,-,,,] -B.D(p,.) 

--1% I 
r% b4i, lp,.) 
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Fig. 2. Block diagram of a computational algorithm (nonrecursive filter) 
corresponding to (16). 

oR~,(r**) = o , i _ _ _ o ,  1 , 2 , . - . , 1 = 1 , 2 , 3  . . . . .  k , Z = I ,  I I, 
ON 

(12a) 

l =  I, R}o (F*) = ~}(/'*), R}~(F*) = 0, i ~  1, (12b) 

l = I I, aRJg (F*) II , ORJ~o (1"*) 
= ,ps ( r ) ,  ON ON 0, i >  1. (12c) 

Performing the inverse transform with the help of (5a), we obtain 

t: I,,, o, ,,I, t? [,,, o, .1 = ~ A ~ y}[nl Rh (o, . )  f- . i .  tl [ n, 9, u ] = ~  l l 
i=l i=0 

(13) 

If we use the relation 
i 

h~ yl [nl ~ (__ l,VC~ l = ~ i y [ n - - v ] ,  
V=0 

(14) 

where the CiV are the binomial coefficients (number of combinations) and introduce the nota- 
tion 

B}v(p, u ) = ( - - 1 )  v 2  v l f , (15) CiRs~ (p, u) -~ 
i = 0  

then 

= Biv (O, u) g~ [n - -  v]. 
W=0 

In terms of the transform functions, (16a) has the form 

(16a) 

n 

t (16b) T}(z, p, u) = YI (z) "~ B/v (p, u) z -v. 

The computational scheme given by (16a), (16b) can be expressed in terms of so-called 
nonrecursive filters [2]. A block diagram of the simplest nonrecursive filter is shown in 
Fig. 2. It consists of elements, corresponding to the operations of summation, amplifica- 
tion (i.e., multiplication by a constant) and time-lag. The diagram corresponds to a limited 
number m~n of terms in the sum in (16). For engineering purposes, analysis shows that it 
is sufficient to limit the number of terms to m = 3-5. 

For a discrete model of a heated body, nonrecursive filters are not always the most ef- 
fective, and in some respects are inferior to recursive filters. 
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Recursive filters [2, 4] allow one to obtain more information on the temperature field 
for the same number of elements (elementary computational operations), and also lead to a 
better convergence to the exact solution for the same value of m. Transformation of (i0) 
and (16) to expressions corresponding to a recursive filter can be done in the following man- 
ner. 

As an external function we take the temperature at one of the inner points of the body 
with coordinates (PA' UA): 

V}(z)= T~(z, OA, UA)' l =  I, II. (17) 
We then obtain the solution in the form 

T~(z, p, u) = V~(z) ~ Pi~ (p, u)f-' (1 -- z-') ~. (18) 
i = 0  

I t  can be shown t h a t  the  a c c u r a c y  o f  t h e  method ,  and i n  p a r t i c u l a r  t h e  number o f  te rms 
i n  t h e  s e r i e s  unde r  t he  summation s i g n  i n  the  s o l u t i o n  n e c e s s a r y  to  o b t a i n  t h e  r e q u i r e d  a c c u -  
r a c y  depend on c h o i c e  o f  the  p o i n t  A. Wi thou t  d w e l l i n g  i n  d e t a i l  on t h i s  q u e s t i o n ,  we show 
t h a t  in  t he  a b s e n c e  o f  a d d i t i o n a l  c o m p l i c a t i o n s ,  p o i n t  A must be ch o sen  such  t h a t  t h e  t h e r m a l  
impedance  be tween  i t  and n e i g h b o r i n g  p o i n t s  on t h e  s u r f a c e  s u b j e c t  to  e x t e r n a l  e f f e c t s  be a 
maximum [5]. At a point within the cross section of the body, the function Rjo@) is a mini- 
mum, while the Rji(P), i ~ 1 take maximum (absolute) values. 

At point (PA, UA) the functions Pji Z take the following values 

l =  I, II ,  P}0(@ n, UA)= l, P~v(PA, UA)=O, V =  1, 2 . . .  (]9) 

At other points, the Pji Z are determined through the functions Rj~(p, u), by expressing 
the external functions from (i0) in terms of Vj~(z); after substitution of the result again 
in (i0) we have 

j ,  @, u) f-J(1 - -  z - q  * 

T l(z, p, u ) =  VS(z) : 

R}~ (~,A, .~)t -~ (1 - z-')  ~ 

Equating (18) and (20) gives 

(20) 

p},(., Z .)] (21) 
R}0 (~A, UA) V = I  

The f u n c t i o n s  P j i l @ ,  u) can be d e t e r m i n e d  d i r e c t l y  w i t h o u t  p r i o r  c a l c u l a t i o n  o f  the  
R j i l @ ,  u ) ,  I t  can be shown t h a t  t h e s e  f u n c t i o n s  a r e  s o l u t i o n s  o f  the  r e c u r s i v e  s e t  o f  equa.- 
tions 

_____ , 2 I ~ pl 2 I l I II ,  VPi , (p ,  u) j , , - l (P ,  u), / ~ 1 ,  v R / 0 = 0  (22) 

s u b j e c t  to  the  bounda ry  c o n d i t i o r ,  s 

8P~,(F**) =0, f = 0 ,  1 . . . .  , / = 1 ,  2, 3, . . . ,  k, 1 = I ,  II,  (23) 
aN 

1 P}v(f*) = idem, l =  II 1 OPJ$(F*) = i d e m  (24) l = I ,  ~ 
m; (V*) W}~ aN 

and condition (19). 

We transform (18) to a form similar to (16): 

tain 

tz 
l Z--V. 

' v : O  

(25) 

Expressing the function VjZ(z) in terms of the original external function YjZ(z), we oh- 
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Fig. 3. Block diagram of a computational algorithm (recursive digital 
filter) corresponding to (27). 

z 
T~ (z, p, u) = Yl (z) v:o,~ 

V~0 

which is really two equations; one of them is (25), the other 

, ( 2 6 )  

= :E 
V~0 

We now take the inverse transform to get 

= Air (O, l~), (27a) 
o 

v j  [n} l t : aiog/[n]__ a i ~ d i [ n _ ~ ]  ' (27b) 
! 

w h e r e  a}0 = ( r * ) ;  = (r*)lA j ( r * ) .  

The r e s u l t  (26) and r e l a t i o n s  (27a) and (27b) deduced from i t  r e p r e s e n t  to a computa- 
t i o n a l  scheme co r respond ing  to a r e c u r s i v e  f i l t e r  as shown i n  F ig .  3. Other  f i l t e r s  can be 
ob ta i ned  w i t h  a p p l i c a t i o n  o f  the techn iques  desc r i bed  i n  [2, 4 ] .  

A p p l i c a t i o n  o f  the above s o l u t i o n  i s  p a r t i c u l a r l y  e f f e c t i v e  when the  number k o f  e x t e r -  
na l  functions yj = (j = i, 2, 3,..., k) is small. In particular, values k = I, 2, 3 are typ- 
ical in practical problems of computer control of transient thermal states of bodies. On the 
other hand, computers normally used for this purpose have a limited operational memory and 
this determines the severity of the decrease in the volume of computational operations car- 
ried out in real time. 

Because the adjusted parameters (for example, parameters characterizing the reliability 
of the process of heating the body) are usually related to values of the temperature at a lim- 
ited number of points on the body, application of our method of solution satisfies this re- 
quirement. Values of the functions P~(p, u) or Rj~(p, u), within required accuracy, are de- 
termined from solution of the approprlate equations using large or medium computers by grid 
methods or Green's function methods. Only the values of these functions at actual points in 
the body are used; they enter as coefficients in expressions which correspond to computer con- 
trol processes. In particular, the author has used solutions obtained by the methods discus- 
sed here to build control algorithms for heating processes in high-power steam turbines at 
start-up. 
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NOTATION 

t, temperature; r, x, geometrical coordinates; L, characteristic size of the body; T~ 
time; At, discrete time step. I = I, II; n, m, k, integers; Az*=L2/a; p= r/paA~*; u=xJ~aA~ * ; 

a, diffusivity; s, Laplace transform variable; V =, Laplacian operatoc; F, bouuda~'y of the 
body; y, v, functions characterizing the external effect on the temperature field; T(z), Y(z), 
V(z), Z-transforms of the functions t, y, v; z=exp(sAi); /=A~/A~*~ 

i. 

2. 
3. 

1 

5. 
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